Module Hamiltonians
This module contains definitions of Hamiltonians, in particular specific physical models of interest. These are organised by means of an interface around the abstract type AbstractHamiltonian
, in the spirit of the AbstractArray
interface as discussed in the Julia Documentation.
The Hamiltonians can be used for projector quantum Monte Carlo with ProjectorMonteCarloProblem
or for exact diagonalization with ExactDiagonalizationProblem
, see Exact Diagonalization.
Rimu.Hamiltonians
— ModuleThe module Rimu.Hamiltonians
defines types and functions for working with Hamiltonians.
Exported concrete Hamiltonian types
Real space Hubbard models
Momentum space Hubbard models
Harmonic oscillator models
Other
GutzwillerSampling
GuidingVectorSampling
ParitySymmetry
TimeReversalSymmetry
Stoquastic
HamiltonianProduct
ScaledHamiltonian
HamiltonianSum
ParticleNumberOperator
G2RealCorrelator
G2MomCorrelator
G2RealSpace
DensityMatrixDiagonal
SingleParticleExcitation
TwoParticleExcitation
Momentum
AxialAngularMomentumHO
Interface for working with Hamiltonians
AbstractHamiltonian
: defined in the moduleInterfaces
Here is a list of fully implemented model Hamiltonians. There are several variants of the Hubbard model in real and momentum space, as well as some other models.
Real space Hubbard models
Rimu.Hamiltonians.HubbardReal1D
— TypeHubbardReal1D(address; u=1.0, t=1.0)
Implements a one-dimensional Bose Hubbard chain in real space.
\[\hat{H} = - \sum_i \left(t a_i^† a_{i+1} + t^* a_{i+1}^† a_i \right) + \frac{u}{2}\sum_i n_i (n_i-1)\]
Arguments
address
: the starting address, defines number of particles and sites.u
: the interaction parameter.t
: the hopping strength.
See also
Rimu.Hamiltonians.HubbardReal1DEP
— TypeHubbardReal1DEP(address; u=1.0, t=1.0, v_ho=1.0)
Implements a one-dimensional Bose Hubbard chain in real space with external potential.
\[\hat{H} = - \sum_i \left(t a_i^† a_{i+1} + t^* a_{i+1}^† a_i \right) + \sum_i ϵ_i n_i + \frac{u}{2}\sum_i n_i (n_i-1)\]
Arguments
address
: the starting address, defines number of particles and sites.u
: the interaction parameter.t
: the hopping strength.v_ho
: strength of the external harmonic oscillator potential $ϵ_i = v_{ho} i^2$.
The first index is i=0
and the maximum of the potential occurs in the centre of the lattice.
See also
Rimu.Hamiltonians.HubbardRealSpace
— TypeHubbardRealSpace(address; geometry=PeriodicBoundaries(M,), t=ones(C), u=ones(C, C), v=zeros(C, D))
Hubbard model in real space. Supports single or multi-component Fock state addresses (with C
components) and various (rectangular) lattice geometries in D
dimensions.
\[ \hat{H} = -\sum_{\langle i,j\rangle,σ} t_σ a^†_{iσ} a_{jσ} + \frac{1}{2}\sum_{i,σ} u_{σσ} n_{iσ} (n_{iσ} - 1) + \sum_{i,σ≠τ}u_{στ} n_{iσ} n_{iτ}\]
If v
is nonzero then this calculates $\hat{H} + \hat{V}$ by adding the harmonic trapping potential
\[ \hat{V} = \sum_{i,σ,d} v_{σd} x_{di}^2 n_{iσ}\]
where $x_{di}$ is the distance of site $i$ from the centre of the trap along dimension $d$.
Address types
BoseFS
: Single-component Bose-Hubbard model.FermiFS
: Single-component Fermi-Hubbard model.CompositeFS
: For multi-component models.
Note that a single component of fermions cannot interact with itself. A warning is produced if address
is incompatible with the interaction parameters u
.
Geometries
Implemented CubicGrid
s for keyword geometry
Default is geometry=PeriodicBoundaries(M,)
, i.e. a one-dimensional lattice with the number of sites M
inferred from the number of modes in address
.
Other parameters
t
: the hopping strengths. Must be a vector of lengthC
. Thei
-th element of the vector corresponds to the hopping strength of thei
-th component.u
: the on-site interaction parameters. Must be a symmetric matrix.u[i, j]
corresponds to the interaction between thei
-th andj
-th component.u[i, i]
corresponds to the interaction of a component with itself. Note thatu[i,i]
must be zero for fermionic components.v
: the trap potential strengths. Must be a matrix of sizeC × D
.v[i,j]
is the strength of the trap for componenti
in thej
th dimension.
Rimu.Hamiltonians.ExtendedHubbardReal1D
— TypeExtendedHubbardReal1D(address; u=1.0, v=1.0, t=1.0, boundary_condition=:periodic, power=nothing)
Implements the extended Hubbard model on a one-dimensional chain in real space. This Hamiltonian can be either real or complex, depending on the choice of boundary_condition
.
\[\hat{H} = - \sum_i \left(t a_i^† a_{i+1} + t^* a_{i+1}^† a_i \right) + \frac{u}{2}\sum_i n_i (n_i-1) + v \sum_{i,j>i} f_{j-i} n_i n_j\]
Arguments
address
: the starting address.u
: on-site interaction parameterv
: the next-neighbor interactiont
: the hopping strengthboundary_condition
The following values are supported::periodic
: usual period boundary condition realising a ring geometry.:hard_wall
: hopping over the boundary is not allowed.:twisted
: like:periodic
but hopping over the boundary incurs an additional factor of-1
.θ <: Number
: like:periodic
and:twisted
but hopping over the boundary incurs a factor $\exp(iθ)$ for a hop to the right and $\exp(−iθ)$ for a hop to the left. With this choice the Hamiltonian will have a complexeltype
whereas otherwise theeltype
is determined by the type of the parameterst
,u
, andv
.
power
: the interaction type. The following values are supported:nothing
: nearest neighbour interaction (default), i.e. $f_{j-i} = δ_{j-i,1}$.p<:Number
: inverse distance interaction, i.e. $f_{j-i} = (j-i)^{-p}$.
See also HubbardRealSpace
.
Momentum space Hubbard models
Rimu.Hamiltonians.HubbardMom1D
— TypeHubbardMom1D(address; u=1.0, t=1.0, dispersion=hubbard_dispersion)
Implements a one-dimensional Bose Hubbard chain in momentum space.
\[\hat{H} = \sum_{k} ϵ_k n_k + \frac{u}{M}\sum_{kpqr} a^†_{r} a^†_{q} a_p a_k δ_{r+q,p+k}\]
Arguments
address
: the starting address, defines number of particles and sites.u
: the interaction parameter.t
: the hopping strength.dispersion
: defines $ϵ_k =$dispersion(t, k)
hubbard_dispersion
: $ϵ_k = -2(\Re(t) \cos(k) + \Im(t) \sin(k))$continuum_dispersion
: $ϵ_k = \Re(t) k^2 - 2 \Im(t) k$
See also
Rimu.Hamiltonians.HubbardMom1DEP
— TypeHubbardMom1DEP(address; u=1.0, t=1.0, v_ho=1.0, dispersion=hubbard_dispersion)
Implements a one-dimensional Bose Hubbard chain in momentum space with harmonic external potential.
\[Ĥ = \sum_{k} ϵ_k n_k + \frac{u}{M}\sum_{kpqr} a^†_{r} a^†_{q} a_p a_k δ_{r+q,p+k} + V̂_\mathrm{ho} ,\]
where
\[\begin{aligned} V̂_\mathrm{ho} & = \frac{1}{M} \sum_{p,q} \mathrm{DFT}[V_{ext}]_{p-q} \, a^†_{p} a_q ,\\ V_\mathrm{ext}(x) &= v_\mathrm{ho} \,x^2 , \end{aligned}\]
is an external harmonic potential in momentum space, $\mathrm{DFT}[…]_k$ is a discrete Fourier transform performed by fft()[k%M + 1]
, and M == num_modes(address)
.
Arguments
address
: the starting address, defines number of particles and sites.u
: the interaction parameter.t
: the hopping strength.dispersion
: defines $ϵ_k =$dispersion(t, k)
hubbard_dispersion
: $ϵ_k = -2[\Re(t) \cos(k) + \Im(t) \sin(k)]$continuum_dispersion
: $ϵ_k = \Re(t) k^2 - 2 \Im(t) k$
v_ho
: strength of the external harmonic oscillator potential $v_\mathrm{ho}$.
See also HubbardMom1D
, HubbardReal1DEP
, Transcorrelated1D
, Hamiltonians
.
Rimu.Hamiltonians.ExtendedHubbardMom1D
— TypeExtendedHubbardMom1D(
address;
u=1.0, t=1.0, v=1.0, dispersion=hubbard_dispersion, boundary_condition = 0.0
)
Implements a one-dimensional extended Hubbard chain, also known as the $t - V$ model, in momentum space.
\[\hat{H} = \sum_{k} ϵ_k n_k + \frac{1}{2M} \sum_{kpqr} (u + 2v \cos(q-p)) a^†_{r} a^†_{q} a_p a_k δ_{r+q,p+k}\]
Arguments
address
: the starting address, defines number of particles and sites.u
: the interaction parameter.t
: the hopping strength.boundary_condition
:θ <: Number
: hopping over the boundary incurs a factor $\exp(iθ)$ for a hop to the right and $\exp(−iθ)$ for a hop to the left.dispersion
: defines $ϵ_k =$dispersion(t, k + θ)
hubbard_dispersion
: $ϵ_k = -2 (\Re(t) \cos(k + θ) + \Im(t) \sin(k + θ))$continuum_dispersion
: $ϵ_k = \Re(t) (k + θ)^2 - 2 \Im(t) (k + θ)$
See also
Harmonic oscillator models
Rimu.Hamiltonians.HOCartesianContactInteractions
— TypeHOCartesianContactInteractions(addr; S, η, g = 1.0, interaction_only = false, block_by_level = true)
Implements a bosonic harmonic oscillator in Cartesian basis with contact interactions
\[\hat{H} = \sum_{i} \epsilon_\mathbf{i} n_\mathbf{i} + \frac{g}{2}\sum_\mathbf{ijkl} V_\mathbf{ijkl} a^†_\mathbf{i} a^†_\mathbf{j} a_\mathbf{k} a_\mathbf{l}.\]
For a $D$-dimensional harmonic oscillator indices $\mathbf{i}, \mathbf{j}, \ldots$ are $D$-tuples. The energy scale is defined by the first dimension i.e. $\hbar \omega_x$ so that single particle energies are
\[ \frac{\epsilon_\mathbf{i}}{\hbar \omega_x} = (i_x + 1/2) + \eta_y (i_y+1/2) + \ldots.\]
The factors $\eta_y, \ldots$ allow for anisotropic trapping geometries and are assumed to be greater than 1
so that $\omega_x$ is the smallest trapping frequency.
By default the offdiagonal elements due to the interactions are consistent with first-order degenerate perturbation theory
\[ V_{\mathbf{ijkl}} = \delta_{\epsilon_\mathbf{i} + \epsilon_\mathbf{j}} ^{\epsilon_\mathbf{k} + \epsilon_\mathbf{l}} \prod_{d \in x, y,\ldots} \mathcal{I}(i_d,j_d,k_d,l_d),\]
where the $\delta$ function indicates that the total noninteracting energy is conserved meaning all states with the same noninteracting energy are connected by this interaction and the Hamiltonian blocks according to noninteracting energy levels. Setting block_by_level = false
will disable this restriction and allow coupling between basis states of any noninteracting energy level, leading to many more offdiagonals and fewer but larger blocks (the blocks are still distinguished by parity of basis states). Alternatively, see HOCartesianEnergyConservedPerDim
for a model with the stronger restriction that conserves energy separately per spatial dimension. The integral $\mathcal{I}(a,b,c,d)$ is of four one dimensional harmonic oscillator basis functions, implemented in four_oscillator_integral_general
.
Arguments
addr
: the starting address, defines number of particles and total number of modes.S
: Tuple of the number of levels in each dimension, including the groundstate. The allowed couplings between states is defined by the aspect ratio ofS .- 1
. Defaults to a 1D spectrum with number of levels matching modes ofaddr
. Will be sorted to make the first dimension the largest.η
: Define a custom aspect ratio for the trapping potential strengths, instead of deriving fromS .- 1
. This will only affect the single particle energy scale and not the interactions. The values are always scaled relative to the first dimension, which sets the energy scale of the system, $\hbar\omega_x$.g
: the (isotropic) bare interaction parameter. The value ofg
is assumed to be in trap units.interaction_only
: if set totrue
then the noninteracting single-particle terms are ignored. Useful if only energy shifts due to interactions are required.block_by_level
: if set to false will allow the interactions to couple all states without comparing their noninteracting energy.
num_offdiagonals
is a bad estimate for this Hamiltonian. Take care when building a matrix or using QMC methods. Use get_all_blocks
first then pass option col_hint = block_size
to BasisSetRep
to safely build the matrix.
Rimu.Hamiltonians.HOCartesianEnergyConservedPerDim
— TypeHOCartesianEnergyConservedPerDim(addr; S, η, g = 1.0, interaction_only = false)
Implements a bosonic harmonic oscillator in Cartesian basis with contact interactions
\[\hat{H} = \sum_{i} ϵ_i n_i + \frac{g}{2}\sum_{ijkl} V_{ijkl} a^†_i a^†_j a_k a_l,\]
with the additional restriction that the interactions only couple states with the same energy in each dimension separately. See HOCartesianContactInteractions
for a model that conserves total energy.
For a $D$-dimensional harmonic oscillator indices $\mathbf{i}, \mathbf{j}, \ldots$ are $D$-tuples. The energy scale is defined by the first dimension i.e. $\hbar \omega_x$ so that single particle energies are
\[ \frac{\epsilon_\mathbf{i}}{\hbar \omega_x} = (i_x + 1/2) + \eta_y (i_y+1/2) + \ldots.\]
The factors $\eta_y, \ldots$ allow for anisotropic trapping geometries and are assumed to be greater than 1
so that $\omega_x$ is the smallest trapping frequency.
Matrix elements $V_{\mathbf{ijkl}}$ are for a contact interaction calculated in this basis using first-order degenerate perturbation theory.
\[ V_{\mathbf{ijkl}} = \prod_{d \in x, y,\ldots} \mathcal{I}(i_d,j_d,k_d,l_d) \delta_{i_d + j_d}^{k_d + l_d},\]
where the $\delta$-function indicates that the noninteracting energy is conserved along each dimension. The integral $\mathcal{I}(a,b,c,d)$ is of four one dimensional harmonic oscillator basis functions, see four_oscillator_integral_general
, with the additional restriction that energy is conserved in each dimension.
Arguments
addr
: the starting address, defines number of particles and total number of modes.S
: Tuple of the number of levels in each dimension, including the groundstate. Defaults to a 1D spectrum with number of levels matching modes ofaddr
. Will be sorted to make the first dimension the largest.η
: Define a custom aspect ratio for the trapping potential strengths, instead of deriving fromS .- 1
. The values are always scaled relative to the first dimension, which sets the energy scale of the system, $\hbar\omega_x$.g
: the (isotropic) interparticle interaction parameter. The value ofg
is assumed to be in trap units.interaction_only
: if set totrue
then the noninteracting single-particle terms are ignored. Useful if only energy shifts due to interactions are required.
Rimu.Hamiltonians.HOCartesianCentralImpurity
— TypeHOCartesianCentralImpurity(addr; kwargs...)
Hamiltonian of non-interacting particles in an arbitrary harmonic trap with a delta-function potential at the centre, with strength g
,
\[\hat{H}_\mathrm{rel} = \sum_\mathbf{i} ϵ_\mathbf{i} n_\mathbf{i} + g\sum_\mathbf{ij} V_\mathbf{ij} a^†_\mathbf{i} a_\mathbf{j}.\]
For a $D$-dimensional harmonic oscillator indices $\mathbf{i}, \mathbf{j}, \ldots$ are $D$-tuples. The energy scale is defined by the first dimension i.e. $\hbar \omega_x$ so that single particle energies are
\[ \frac{\epsilon_\mathbf{i}}{\hbar \omega_x} = (i_x + 1/2) + \eta_y (i_y+1/2) + \ldots.\]
The factors $\eta_y, \ldots$ allow for anisotropic trapping geometries and are assumed to be greater than 1
so that $\omega_x$ is the smallest trapping frequency.
Matrix elements $V_{\mathbf{ij}}$ are for a delta function potential calculated in this basis
\[ V_{\mathbf{ij}} = \prod_{d \in x, y,\ldots} \psi_{i_d}(0) \psi_{j_d}(0).\]
Only even parity states feel this impurity, so all $i_d$ are even. Note that the matrix representation of this Hamiltonian for a single particle is completely dense in the even-parity subspace.
Arguments
addr
: the starting address, defines number of particles and total number of modes.max_nx = num_modes(addr) - 1
: the maximum harmonic oscillator index number in the $x$-dimension. Must be even. Index number for the harmonic oscillator groundstate is0
.ηs = ()
: a tuple of aspect ratios for the remaining dimensions(η_y, ...)
. Should be empty for a 1D trap or contain values greater than1.0
. The maximum index in other dimensions will be the largest even number less thanM/η_y
.S = nothing
: Instead ofmax_nx
, manually set the number of levels in each dimension, including the groundstate. Must be aTuple
ofInt
s.g = 1.0
: the strength of the delta impurity in ($x$-dimension) trap units.impurity_only=false
: if set totrue
then the trap energy terms are ignored. Useful if only energy shifts due to the impurity are required.
Due to use of `SpecialFunctions` with large arguments the matrix representation of
this Hamiltonian may not be strictly symmetric, but is approximately symmetric within
machine precision.
See also HOCartesianContactInteractions
andHOCartesianEnergyConservedPerDim
.
Other model Hamiltonians
Rimu.Hamiltonians.MatrixHamiltonian
— TypeMatrixHamiltonian(
mat::AbstractMatrix{T};
starting_address::Int = findmin(real.(diag(mat)))[2]
) <: AbstractHamiltonian{T}
Wrap an abstract matrix mat
as an AbstractHamiltonian
object. Works with stochastic methods of ProjectorMonteCarloProblem()
and DVec
. Optionally, a valid index can be provided as the starting_address
.
Specialised methods are implemented for sparse matrices of type AbstractSparseMatrixCSC
. One based indexing is required for the matrix mat
.
Rimu.Hamiltonians.Transcorrelated1D
— TypeTranscorrelated1D(address; t=1.0, v=1.0, v_ho=0.0, cutoff=1, three_body_term=true)
Implements a transcorrelated Hamiltonian for contact interactions in one dimensional momentum space from Jeszenski et al. (2018). Currently limited to two component fermionic addresses.
\[\begin{aligned} \tilde{H} &= t \sum_{kσ}k^2 n_{k,σ} \\ &\quad + \sum_{pqkσσ'} T_{pqk} a^†_{p-k,σ} a^†_{q+k,σ'} a_{q,σ'} a_{p,σ} \\ &\quad + \sum_{pqskk'σσ'} Q_{kk'}a^†_{p-k,σ} a^†_{q+k,σ} a^†_{s+k-k',σ'} a_{s,σ'} a_{q,σ} a_{p,σ} \\ &\quad + V̂_\mathrm{ho} \end{aligned}\]
where
\[\begin{aligned} \tilde{u}(k) &= \begin{cases} -\frac{2}{k^2} &\mathrm{if\ } |k| ≥ k_c\\ 0 & \mathrm{otherwise} \end{cases} \\ T_{pqk} &= \frac{v}{M} + \frac{2v}{M}\left[k^2\tilde{u}(k) - (p - q)k\tilde{u}(k)\right] + \frac{2v^2}{t}W(k)\\ W(k) &= \frac{1}{M^2}\sum_{q} (k - q)q\, \tilde{u}(q)\,\tilde{u}(k - q) \\ Q_{kl} &= -\frac{v^2}{t M^2}k \tilde{u}(k)\,l\tilde{u}(l), \end{aligned}\]
Arguments
address
: The starting address, defines number of particles and sites.v
: The interaction parameter.t
: The kinetic energy prefactor.v_ho
: Strength of the external harmonic oscillator potential $V̂_\mathrm{ho}$. SeeHubbardMom1DEP
.cutoff
controls $k_c$ in equations above. Note: skipping generating off-diagonal elements below the cutoff is not implemented - zero-valued elements are returned instead.three_body_term
: If set to false, generating three body excitations is skipped. Note: when disabling three body terms, cutoff should be set to a higher value for best results.
See also
Rimu.Hamiltonians.FroehlichPolaron
— TypeFroehlichPolaron(address::OccupationNumberFS{M}; kwargs...) <: AbstractHamiltonian
The Froehlich polaron Hamiltonian for a 1D lattice with M
momentum modes is given by
\[H = (p̂_f - p)^2/m + ωN̂ - v Σₖ(âₖ^† + â₋ₖ)\]
where $p$ is the total momentum, $p̂_f = Σ_k k âₖ^† âₖ$ is the momentum operator for the bosons, and $k$ part of the momentum lattice with separation $2π/l$. $N̂$ is the number operator for the bosons.
Keyword Arguments
p=0.0
: the total momentum $p$.v=1.0
: the coupling strength $v$.mass=1.0
: the particle mass $m$.omega=1.0
: the oscillation frequency of the phonons $ω$.l=1.0
: the box size in real space $l$. Provides scale parameter of the momentum lattice.momentum_cutoff=nothing
: the maximum boson momentum allowed for an address.mode_cutoff
: the maximum number of bosons in each momentum mode. Defaults to the maximum value supported by the address typeOccupationNumberFS
.
Examples
julia> fs = OccupationNumberFS(0,0,0)
OccupationNumberFS{3, UInt8}(0, 0, 0)
julia> ham = FroehlichPolaron(fs; v=0.5)
FroehlichPolaron(fs"|0 0 0⟩{8}"; v=0.5, mass=1.0, omega=1.0, l=1.0, p=0.0, mode_cutoff=255)
julia> dimension(ham)
16777216
julia> dimension(FroehlichPolaron(fs; v=0.5, mode_cutoff=5))
216
See also OccupationNumberFS
, dimension
, AbstractHamiltonian
.
Convenience functions
Rimu.Hamiltonians.rayleigh_quotient
— Functionrayleigh_quotient(H, v)
Return the Rayleigh quotient of the linear operator H
and the vector v
:
\[\frac{⟨ v | H | v ⟩}{⟨ v|v ⟩}\]
Rimu.Hamiltonians.momentum
— Functionmomentum(ham::AbstractHamiltonian)
Momentum as a linear operator in Fock space. Pass a Hamiltonian ham
in order to convey information about the Fock basis. Returns an AbstractHamiltonian
that represents the momentum operator.
Note: momentum
is currently only defined on HubbardMom1D
.
Example
julia> add = BoseFS((1, 0, 2, 1, 2, 1, 1, 3));
julia> ham = HubbardMom1D(add; u = 2.0, t = 1.0);
julia> mom = momentum(ham);
julia> diagonal_element(mom, add) # calculate the momentum of a single configuration
-1.5707963267948966
julia> v = DVec(add => 10; capacity=1000);
julia> rayleigh_quotient(mom, v) # momentum expectation value for state vector `v`
-1.5707963267948966
Part of the AbstractHamiltonian
interface.
Rimu.Hamiltonians.hubbard_dispersion
— Functionhubbard_dispersion(t, k)
Dispersion relation for HubbardMom1D
. Returns $-2(\Re(t) \cos(k) + \Im(t) \sin(k))$.
See also continuum_dispersion
.
Rimu.Hamiltonians.continuum_dispersion
— Functioncontinuum_dispersion(t, k)
Dispersion relation for HubbardMom1D
. Returns $\Re(t) k^2 - 2 \Im(t) k$.
See also hubbard_dispersion
.
Rimu.Hamiltonians.shift_lattice
— Functionshift_lattice(is)
Circular shift contiguous indices is
in interval [M÷2, M÷2)
such that set starts with 0, where M=length(is)
.
Inverse operation: shift_lattice_inv
. Used in HubbardReal1DEP
and HubbardMom1DEP
Rimu.Hamiltonians.shift_lattice_inv
— Functionshift_lattice_inv(js)
Circular shift indices starting with 0 into a contiguous set in interval [M÷2, M÷2)
, where M=length(js)
.
Inverse operation of shift_lattice
. Used in HubbardReal1DEP
and HubbardMom1DEP
Hamiltonian wrappers
The following Hamiltonians are constructed from an existing Hamiltonian instance and change its behaviour:
Rimu.Hamiltonians.GutzwillerSampling
— TypeGutzwillerSampling(H::AbstractHamiltonian; g)
Wrapper over any AbstractHamiltonian
that implements Gutzwiller sampling. In this importance sampling scheme the Hamiltonian is modified as follows
\[\tilde{H}_{ij} = H_{ij} e^{-g(H_{ii} - H_{jj})} .\]
This way off-diagonal spawns to higher-energy configurations are discouraged and spawns to lower-energy configurations encouraged for positive g
while keeping the spectrum of the Hamiltonian intact.
Constructor
GutzwillerSampling(::AbstractHamiltonian, g)
GutzwillerSampling(::AbstractHamiltonian; g)
After construction, we can access the underlying Hamiltonian with G.hamiltonian
and the g
parameter with G.g
.
Example
julia> H = HubbardMom1D(BoseFS(1,1,1); u=6.0, t=1.0)
HubbardMom1D(fs"|1 1 1⟩"; u=6.0, t=1.0)
julia> G = GutzwillerSampling(H, g=0.3)
GutzwillerSampling(HubbardMom1D(fs"|1 1 1⟩"; u=6.0, t=1.0); g=0.3)
julia> Matrix(H; sort=true)
4×4 Matrix{Float64}:
9.0 0.0 4.89898 0.0
0.0 0.0 4.89898 0.0
4.89898 4.89898 12.0 4.89898
0.0 0.0 4.89898 9.0
julia> Matrix(G; sort=true)
4×4 Matrix{Float64}:
9.0 0.0 12.0495 0.0
0.0 0.0 179.294 0.0
1.99178 0.133858 12.0 1.99178
0.0 0.0 12.0495 9.0
julia> eigen(Matrix(H)).values
4-element Vector{Float64}:
-2.3661456273236645
4.9594958589580465
8.999999999999996
18.406649768365643
julia> eigen(Matrix(G)).values
4-element Vector{Float64}:
-2.366145627323686
4.959495858958046
8.999999999999998
18.40664976836564
Observables
See AllOverlaps
for calculation of observables with a transformed Hamiltonian.
Rimu.Hamiltonians.GuidingVectorSampling
— TypeGuidingVectorSampling
Wrapper over any AbstractHamiltonian
that implements guided vector a.k.a. guided wave function sampling. In this importance sampling scheme the Hamiltonian is modified as follows.
\[\tilde{H}_{ij} = v_i H_{ij} v_j^{-1}\]
and where v
is the guiding vector. v_i
and v_j
are also thresholded to avoid dividing by zero (see below).
Constructors
GuidingVectorSampling(::AbstractHamiltonian, vector, eps)
GuidingVectorSampling(::AbstractHamiltonian; vector, eps)
eps
is a thresholding parameter used to avoid dividing by zero; all values below eps
are set to eps
. It is recommended that eps
is in the same value range as the guiding vector. The default value is set to eps=norm(v, Inf) * 1e-2
After construction, we can access the underlying hamiltonian with G.hamiltonian
, the eps
parameter with G.eps
, and the guiding vector with G.vector
.
Example
julia> H = HubbardMom1D(BoseFS(1,1,1); u=6.0, t=1.0);
julia> v = DVec(starting_address(H) => 10);
julia> G = GuidingVectorSampling(H, v, 0.1);
julia> Matrix(H; sort=true)
4×4 Matrix{Float64}:
9.0 0.0 4.89898 0.0
0.0 0.0 4.89898 0.0
4.89898 4.89898 12.0 4.89898
0.0 0.0 4.89898 9.0
julia> Matrix(G; sort=true)
4×4 Matrix{Float64}:
9.0 0.0 0.0489898 0.0
0.0 0.0 0.0489898 0.0
489.898 489.898 12.0 489.898
0.0 0.0 0.0489898 9.0
julia> eigen(Matrix(H)).values
4-element Vector{Float64}:
-2.3661456273236645
4.9594958589580465
8.999999999999996
18.406649768365643
julia> eigen(Matrix(G)).values
4-element Vector{Float64}:
-2.366145627323689
4.9594958589580465
8.999999999999998
18.406649768365643
Observables
See AllOverlaps
for calculation of observables with a transformed Hamiltonian.
Rimu.Hamiltonians.ParitySymmetry
— TypeParitySymmetry(ham::AbstractHamiltonian{T}; even=true) <: AbstractHamiltonian{T}
Impose even or odd parity on all states and the Hamiltonian ham
as controlled by the keyword argument even
. Parity symmetry of the Hamiltonian is assumed. For some Hamiltonians, ParitySymmetry
reduces the size of the Hilbert space by half.
ParitySymmetry
performs a unitary transformation, leaving the eigenvalues unchanged and preserving the LOStructure
. This is achieved by changing the basis set to states with defined parity. Effectively, a non-even address $|α⟩$ is replaced by $\frac{1}{√2}(|α⟩ ± |ᾱ⟩)$ for even and odd parity, respectively, where ᾱ == reverse(α)
.
Notes
- This modifier currently only works on
starting_address
s with an odd number of modes. - For odd parity, the
starting_address
of the underlying Hamiltonian cannot be symmetric. - If parity is not a symmetry of the Hamiltonian
ham
then the result is undefined. ParitySymmetry
works by modifying theoffdiagonals
iterator.
julia> ham = HubbardReal1D(BoseFS(0,2,1))
HubbardReal1D(fs"|0 2 1⟩"; u=1.0, t=1.0)
julia> size(Matrix(ham))
(10, 10)
julia> size(Matrix(ParitySymmetry(ham)))
(6, 6)
julia> size(Matrix(ParitySymmetry(ham; odd=true)))
(4, 4)
julia> eigvals(Matrix(ham))[1] ≈ eigvals(Matrix(ParitySymmetry(ham)))[1]
true
See also TimeReversalSymmetry
.
Rimu.Hamiltonians.TimeReversalSymmetry
— TypeTimeReversalSymmetry(ham::AbstractHamiltonian{T}; even=true) <: AbstractHamiltonian{T}
Impose even or odd time reversal on all states and the Hamiltonian ham
as controlled by the keyword argument even
. If time reversal is a symmetry of the Hamiltonian it will block (reducing Hilbert space dimension) preserving the eigenvalues and LOStructure
.
Notes
- This modifier only works two component
starting_address
es. - For odd time reversal symmetry, the
starting_address
of the underlying Hamiltonian must not be symmetric. - If time reversal is not a symmetry of the Hamiltonian
ham
then the result is undefined. TimeReversalSymmetry
works by modifying theoffdiagonals
iterator.
julia> ham = HubbardMom1D(FermiFS2C((1,0,1),(0,1,1)));
julia> size(Matrix(ham))
(3, 3)
julia> size(Matrix(TimeReversalSymmetry(ham)))
(2, 2)
julia> size(Matrix(TimeReversalSymmetry(ham, even=false)))
(1, 1)
julia> eigvals(Matrix(TimeReversalSymmetry(ham)))[1] ≈ eigvals(Matrix(ham))[1]
true
See also ParitySymmetry
.
Rimu.Hamiltonians.Stoquastic
— TypeStoquastic(ham <: AbstractHamiltonian) <: AbstractHamiltonian
A wrapper for an AbstractHamiltonian
that replaces all off-diagonal matrix elements v
by -abs(v)
, thus making the new Hamiltonian stoquastic.
A stoquastic Hamiltonian does not have a Monte Carlo sign problem. For a hermitian ham
the smallest eigenvalue of Stoquastic(ham)
is ≤ the smallest eigenvalue of ham
.
Rimu.Hamiltonians.TransformUndoer
— TypeTransformUndoer(transform::AbstractHamiltonian, op::AbstractObservable) <: AbstractHamiltonian
Create a new operator for the purpose of calculating overlaps of transformed vectors, which are defined by some transformation transform
. The new operator should represent the effect of undoing the transformation before calculating overlaps, including with an optional operator op
.
Not exported; transformations should define all necessary methods and properties, see AbstractHamiltonian
. An ArgumentError
is thrown if used with an unsupported transformation.
Example
A similarity transform $\hat{G} = f \hat{H} f^{-1}$ has eigenvector $d = f \cdot c$ where $c$ is an eigenvector of $\hat{H}$. Then the overlap $c' \cdot c = d' \cdot f^{-2} \cdot d$ can be computed by defining all necessary methods for TransformUndoer(G)
to represent the operator $f^{-2}$ and calculating dot(d, TransformUndoer(G), d)
.
Observables in the transformed basis can be computed by defining TransformUndoer(G, A)
to represent $f^{-1} A f^{-1}$.
Supported transformations
Rimu.Hamiltonians.HamiltonianProduct
— TypeHamiltonianProduct(A::AbstractHamiltonian, B::AbstractHamiltonian; commuting=A==B)
*(A::AbstractHamiltonian, B::AbstractHamiltonian)
The product of two AbstractHamiltonian
s, acting from right to left. The two Hamiltonians must act on the same address space. Set commuting
to true
if A
and B
commute.
See also ScaledHamiltonian
, HamiltonianSum
, AbstractHamiltonian
.
Rimu.Hamiltonians.ScaledHamiltonian
— TypeScaledHamiltonian(H::AbstractHamiltonian, α) <: AbstractHamiltonian
scale(H, α)
α * H
The product of the Hamiltonian H
with the scalar α
.
See also HamiltonianSum
, HamiltonianProduct
, AbstractHamiltonian
.
Rimu.Hamiltonians.HamiltonianSum
— TypeHamiltonianSum(A::AbstractHamiltonian, B::AbstractHamiltonian; weight=0.5) <: AbstractHamiltonian
add(A::AbstractHamiltonian, B::AbstractHamiltonian, [a=1, b=1]; weight=0.5) -> HamiltonianSum
+(A::AbstractHamiltonian, B::AbstractHamiltonian)
The sum of two AbstractHamiltonian
s, $A + B$. The two Hamiltonians must act on the same address space. The keyword argument weight
affects random spawning with random_offdiagonal
and determines the probability of random spawns from A
, with 1 - weight
the probability of spawning from B
.
If coefficients a
and b
are given, the Hamiltonians are scaled with ScaledHamiltonian
, to represent $aA + bB$.
See also ScaledHamiltonian
, HamiltonianProduct
, AbstractHamiltonian
.
Observables
Rimu.jl
offers two other supertypes for operators that are less restrictive than AbstractHamiltonian
. AbstractObservable
and AbstractOperator
s both can represent a physical observable. Their expectation values can be sampled during a ProjectorMonteCarloProblem
simulation by passing them into a suitable ReplicaStrategy
, e.g. AllOverlaps
. Some observables are also AbstractHamiltonian
s. The full type hierarchy is
AbstractHamiltonian{T} <: AbstractOperator{T} <: AbstractObservable{T}
Rimu.Hamiltonians.IdentityOperator
— TypeIdentityOperator() <: AbstractOperator{Float64}
The diagonal operator with 1.0 along its diagonal.
Rimu.Hamiltonians.ParticleNumberOperator
— TypeParticleNumberOperator() <: AbstractOperator{Float64}
The number operator in Fock space. This operator is diagonal in the Fock basis and returns the number of particles in the Fock state. It works with any address type that is a subtype of AbstractFockAddress
.
julia> p = ExactDiagonalizationProblem(FroehlichPolaron(fs"|0 0⟩{}"; mode_cutoff=5, v=3));
julia> gs = solve(p).vectors[1]; # normalised ground state vector
julia> dot(gs, ParticleNumberOperator(), gs) # particle number expectation value
2.8823297252925917
See also AbstractHamiltonian
.
Rimu.Hamiltonians.G2RealCorrelator
— TypeG2RealCorrelator(d::Int) <: AbstractOperator{Float64}
Two-body operator for density-density correlation between sites separated by d
with 0 ≤ d < M
.
\[ \hat{G}^{(2)}(d) = \frac{1}{M} \sum_i^M \hat{n}_i (\hat{n}_{i+d} - \delta_{0d}).\]
Assumes a one-dimensional lattice with periodic boundary conditions where
\[ \hat{G}^{(2)}(-M/2 \leq d < 0) = \hat{G}^{(2)}(|d|),\]
\[ \hat{G}^{(2)}(M/2 < d < M) = \hat{G}^{(2)}(M - d),\]
and normalisation
\[ \sum_{d=0}^{M-1} \langle \hat{G}^{(2)}(d) \rangle = \frac{N (N-1)}{M}.\]
For multicomponent basis, calculates correlations between all particles equally, equivalent to stacking all components into a single Fock state.
Arguments
d::Integer
: distance between sites.
See also
Rimu.Hamiltonians.G2RealSpace
— TypeG2RealSpace(geometry::CubicGrid, σ=1, τ=1; sum_components=false) <: AbstractOperator{SArray}
Two-body operator for density-density correlation for all Displacements
$d⃗$ in the specified geometry
.
\[ \hat{G}^{(2)}_{σ,τ}(d⃗) = \frac{1}{M} ∑_{i⃗} n̂_{σ,i⃗} (n̂_{τ,i⃗+d⃗} - δ_{0⃗,d⃗}δ_{σ,τ}).\]
For multicomponent addresses, σ
and τ
control the components involved. Alternatively, sum_components
can be set to true
, which treats all particles as belonging to the same component.
Examples
julia> geom = CubicGrid(2, 2);
julia> g2 = G2RealSpace(geom)
G2RealSpace(CubicGrid((2, 2), (true, true)), 1,1)
julia> diagonal_element(g2, BoseFS(2,0,1,1))
2×2 StaticArraysCore.SMatrix{2, 2, Float64, 4} with indices SOneTo(2)×SOneTo(2):
0.5 1.0
0.5 1.0
julia> g2_cross = G2RealSpace(geom, 1, 2)
G2RealSpace(CubicGrid((2, 2), (true, true)), 1,2)
julia> g2_sum = G2RealSpace(geom, sum_components=true)
G2RealSpace(CubicGrid((2, 2), (true, true)); sum_components=true)
julia> diagonal_element(g2, fs"|⇅⋅↓↑⟩")
2×2 StaticArraysCore.SMatrix{2, 2, Float64, 4} with indices SOneTo(2)×SOneTo(2):
0.0 0.0
0.0 0.5
julia> diagonal_element(g2_cross, fs"|⇅⋅↓↑⟩")
2×2 StaticArraysCore.SMatrix{2, 2, Float64, 4} with indices SOneTo(2)×SOneTo(2):
0.25 0.25
0.25 0.25
julia> diagonal_element(g2_sum, fs"|⇅⋅↓↑⟩")
2×2 StaticArraysCore.SMatrix{2, 2, Float64, 4} with indices SOneTo(2)×SOneTo(2):
0.5 1.0
0.5 1.0
See also
Rimu.Hamiltonians.G2MomCorrelator
— TypeG2MomCorrelator(d::Int) <: AbstractOperator{ComplexF64}
Two-body correlation operator representing the density-density correlation at distance d
. It returns a Complex
value.
Correlation within a single component:
\[\hat{G}^{(2)}(d) = \frac{1}{M}\sum_{spqr=1}^M e^{-id(p-q)2π/M} a^†_{s} a^†_{p} a_q a_r δ_{s+p,q+r}\]
The diagonal element, where (p-q)=0
, is
\[\frac{1}{M}\sum_{k,p=1}^M a^†_{k} b^†_{p} b_p a_k .\]
Arguments
d::Integer
: the distance between two particles.
See also
Rimu.Hamiltonians.SuperfluidCorrelator
— TypeSuperfluidCorrelator(d::Int) <: AbstractOperator{Float64}
Operator for extracting superfluid correlation between sites separated by a distance d
with 0 ≤ d < M
:
\[ \hat{C}_{\text{SF}}(d) = \frac{1}{M} \sum_{i}^{M} a_{i}^{\dagger} a_{i + d}\]
Assumes a one-dimensional lattice with $M$ sites and periodic boundary conditions. $M$ is also the number of modes in the Fock state address.
Usage
Superfluid correlations can be extracted from a Monte Carlo calculation by wrapping SuperfluidCorrelator
with AllOverlaps
and passing into ProjectorMonteCarloProblem
with the replica
keyword argument. For an example with a similar use of G2RealCorrelator
see G2 Correlator Example.
See also HubbardReal1D
, G2RealCorrelator
, AbstractOperator
, and AllOverlaps
.
Rimu.Hamiltonians.StringCorrelator
— TypeStringCorrelator(d::Int; address=nothing, type=nothing) <: AbstractOperator{T}
Operator for extracting string correlation between lattice sites on a one-dimensional Hubbard lattice separated by a distance d
with 0 ≤ d < M
\[ Ĉ_{\text{string}}(d) = \frac{1}{M} \sum_{j}^{M} δ n̂_j (e^{i π \sum_{j ≤ k < j + d} δ n̂_k}) δ n̂_{j+d}\]
Here, $δ n̂_j = n̂_j - n̄$ is the boson number deviation from the mean filling number and $n̄ = N/M$ is the mean filling number of lattice sites with $N$ particles and $M$ lattice sites (or modes).
Assumes a one-dimensional lattice with periodic boundary conditions. For usage see SuperfluidCorrelator
and AllOverlaps
.
The default element type T
is ComplexF64
. This can be overridden with the type
keyword argument. If an address
is provided, then T
is calculated from the address type. It is set to ComplexF64
for non-integer filling numbers, and to Float64
for integer filling numbers or if d==0
.
See also HubbardReal1D
, G2RealCorrelator
, SuperfluidCorrelator
, AbstractOperator
, and AllOverlaps
.
Rimu.Hamiltonians.DensityMatrixDiagonal
— TypeDensityMatrixDiagonal(mode; component=0) <: AbstractHamiltonian
Represent a diagonal element of the single-particle density:
\[\hat{n}_{i,σ} = \hat a^†_{i,σ} \hat a_{i,σ}\]
where $i$ is the mode
and $σ$ is the component
. If component
is zero, the sum over all components is computed.
See also
Rimu.Hamiltonians.SingleParticleExcitation
— TypeSingleParticleExcitation(i, j) <: AbstractOperator
Represent the ${i,j}$ element of the single-particle reduced density matrix:
\[ρ̂^{(1)}_{i,j} = â^†_{i} â_{j}\]
where i <: Int
and j <: Int
specify the mode numbers.
See also
Rimu.Hamiltonians.TwoParticleExcitation
— TypeTwoParticleExcitation(i, j, k, l) <: AbstractOperator
Represent the ${ij, kl}$ element of the two-particle reduced density matrix:
\[ρ̂^{(2)}_{ij, kl} = â^†_{i} â^†_{j} â_{l} â_{k}\]
where i
, j
, k
, and l
(all <: Int
) specify the mode numbers.
See also
Rimu.Hamiltonians.ReducedDensityMatrix
— TypeReducedDensityMatrix{T=Float64}(p) <: AbstractObservable{Hermitian{T, Matrix{T}}}
A matrix-valued operator that can be used to calculate the p
-particle reduced density matrix. The matrix elements are defined as:
\[\hat{ρ}^{(p)}_{j_1,...,j_1,k_1,...,k_p} = \prod_{i=1}^{p} â^†_{j_i} \prod_{l=p}^{1} â_{k_{l}}\]
The integer indices j_i
and k_i
represent single particle modes. For efficiency they are chosen to be distinct and ordered:
\[j_1 < j_2 < \ldots < j_{p} \quad \land \quad k_1 < k_2 < \ldots < k_{p}\]
ReducedDensityMatrix
can be used to construct the single-particle reduced density matrix (with p == 1
) for fermionic and bosonic Fock spaces with address types <: SingleComponentFockAddress
. For higher order reduced density matrices with p > 1
only fermionic Fock addresses (FermiFS
) are supported due to the ordering of indices.
ReducedDensityMatrix
can be used with dot
or AllOverlaps
to calculate the whole matrix in one go.
Examples
julia> dvec_b = PDVec(BoseFS(1,1) => 0.5, BoseFS(2,0) => 0.5)
2-element PDVec: style = IsDeterministic{Float64}()
fs"|2 0⟩" => 0.5
fs"|1 1⟩" => 0.5
julia> Op1 = ReducedDensityMatrix(1)
ReducedDensityMatrix{Float64}(1)
julia> dot(dvec_b, Op1, dvec_b)
2×2 Hermitian{Float64, Matrix{Float64}}:
0.75 0.353553
0.353553 0.25
julia> Op2 = ReducedDensityMatrix{Float32}(2)
ReducedDensityMatrix{Float32}(2)
julia> dvec_f = PDVec(FermiFS(1,1,0,0) => 0.5, FermiFS(0,1,1,0) => 0.5)
2-element PDVec: style = IsDeterministic{Float64}()
fs"|↑↑⋅⋅⟩" => 0.5
fs"|⋅↑↑⋅⟩" => 0.5
julia> dot(dvec_f, Op2, dvec_f)
6×6 Hermitian{Float32, Matrix{Float32}}:
0.25 0.0 0.25 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.25 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
See also single_particle_density
, SingleParticleDensity
, SingleParticleExcitation
, TwoParticleExcitation
.
Rimu.Hamiltonians.Momentum
— TypeMomentum(component=0; fold=true) <: AbstractHamiltonian
The momentum operator $P̂$.
The component argument controls which component of the address is taken into consideration. A value of 0 sums the contributions of all components. If fold
is true, the momentum is folded into the Brillouin zone.
julia> address = BoseFS((1, 0, 2, 1, 2, 1, 1, 3))
BoseFS{11,8}(1, 0, 2, 1, 2, 1, 1, 3)
julia> v = DVec(address => 10);
julia> rayleigh_quotient(Momentum(), DVec(address => 1))
-2.0
julia> rayleigh_quotient(Momentum(fold=false), DVec(address => 1))
14.0
Rimu.Hamiltonians.AxialAngularMomentumHO
— TypeAxialAngularMomentumHO(S; z_dim = 3, addr = BoseFS(prod(S))) <: AbstractHamiltonian
Angular momentum operator for application to Cartesian harmonic oscillator basis, see HOCartesianContactInteractions
or HOCartesianEnergyConservedPerDim
. Represents the projection of angular momentum onto z
-axis:
\[\hat{L}_z = i \hbar \sum_{j=1}^N \left( b_x b_y^\dag - b_y b_x^\dag \right),\]
where $b_x^\dag$ and $b_x$ are raising and lowering (ladder) operators for a harmonic oscillator in the $x$ dimension, and simlarly for $y$.
This is implemented for an $N$ particle Fock space with creation and annihilation operators as
\[\frac{1}{\hbar} \hat{L}_z = i \sum_{n_x=1}^{M_x} \sum_{n_y=1}^{M_y} \left( a_{n_x-1,n_y+1}^\dag - a_{n_x+1,n_y-1}^\dag \right) a_{n_x, n_y}.\]
in units of $\hbar$.
Argument S
is a tuple defining the range of Cartesian modes in each dimension and their mapping to Fock space modes in a SingleComponentFockAddress
. If S
indicates a 3D system the z
dimension can be changed by setting z_dim
; S
should be be isotropic in the remaining x
-y
plane, i.e. must have S[x_dim] == S[y_dim]
. The starting address addr
only needs to satisfy num_modes(addr) == prod(S)
.
Example
Calculate the overlap of two Fock addresses interpreted as harmonic oscillator states in a 2D Cartesian basis
julia> S = (2,2)
(2, 2)
julia> Lz = AxialAngularMomentumHO(S)
AxialAngularMomentumHO((2, 2); z_dim = 3, addr = BoseFS{0,4}(0, 0, 0, 0))
julia> v = DVec(BoseFS(prod(S), 2 => 1) => 1.0)
DVec{BoseFS{1, 4, BitString{4, 1, UInt8}},Float64} with 1 entry, style = IsDeterministic{Float64}()
fs"|0 1 0 0⟩" => 1.0
julia> w = DVec(BoseFS(prod(S), 3 => 1) => 1.0)
DVec{BoseFS{1, 4, BitString{4, 1, UInt8}},Float64} with 1 entry, style = IsDeterministic{Float64}()
fs"|0 0 1 0⟩" => 1.0
julia> dot(w, Lz, v)
0.0 + 1.0im
Geometry
Lattices in higher dimensions are defined here and can be passed with the keyword argument geometry
to HubbardRealSpace
and G2RealSpace
.
Rimu.Hamiltonians.CubicGrid
— TypeCubicGrid(dims::NTuple{D,Int}, fold::NTuple{D,Bool})
Represents a D
-dimensional grid. Used to define a cubic lattice and boundary conditions for some AbstractHamiltonian
s, e.g. with the keyword argument geometry
when constructing a HubbardRealSpace
. The type instance can be used to convert between cartesian vector indices (tuples or SVector
s) and linear indices (integers). When indexed with vectors, it folds them back into the grid if the out-of-bounds dimension is periodic and 0 otherwise (see example below).
dims
controls the size of the grid in each dimension.fold
controls whether the boundaries in each dimension are periodic (or folded in the case of momentum space).
julia> geo = CubicGrid((2,3), (true,false))
CubicGrid{2}((2, 3), (true, false))
julia> geo[1]
(1, 1)
julia> geo[2]
(2, 1)
julia> geo[3]
(1, 2)
julia> geo[(1,2)]
3
julia> geo[(3,2)] # 3 is folded back into 1
3
julia> geo[(3,3)]
5
julia> geo[(3,4)] # returns 0 if out of bounds
0
See also PeriodicBoundaries
, HardwallBoundaries
and LadderBoundaries
for special-case constructors. See also HubbardRealSpace
and G2RealSpace
.
Rimu.Hamiltonians.Directions
— TypeDirections(D) <: AbstractVector{SVector{D,Int}}
Directions(geometry::CubicGrid) <: AbstractVector{SVector{D,Int}}
Iterate over axis-aligned direction vectors in D
dimensions.
julia> Directions(3)
6-element Directions{3}:
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
[-1, 0, 0]
[0, -1, 0]
[0, 0, -1]
See also CubicGrid
.
Rimu.Hamiltonians.Displacements
— TypeDisplacements(geometry::CubicGrid) <: AbstractVector{SVector{D,Int}}
Return all valid offset vectors in a CubicGrid
. If center=true
the (0,0) displacement is placed at the centre of the array.
julia> geometry = CubicGrid((3,4));
julia> reshape(Displacements(geometry), (3,4))
3×4 reshape(::Displacements{2, CubicGrid{2, (3, 4), (true, true)}}, 3, 4) with eltype StaticArraysCore.SVector{2, Int64}:
[0, 0] [0, 1] [0, 2] [0, 3]
[1, 0] [1, 1] [1, 2] [1, 3]
[2, 0] [2, 1] [2, 2] [2, 3]
julia> reshape(Displacements(geometry; center=true), (3,4))
3×4 reshape(::Displacements{2, CubicGrid{2, (3, 4), (true, true)}}, 3, 4) with eltype StaticArraysCore.SVector{2, Int64}:
[-1, -1] [-1, 0] [-1, 1] [-1, 2]
[0, -1] [0, 0] [0, 1] [0, 2]
[1, -1] [1, 0] [1, 1] [1, 2]
Rimu.Hamiltonians.neighbor_site
— Functionneighbor_site(geom::CubicGrid, site, i)
Find the i
-th neighbor of site
in the geometry. If the move is illegal, return 0.
See also CubicGrid
.
Rimu.Hamiltonians.PeriodicBoundaries
— FunctionPeriodicBoundaries(dims...) -> CubicGrid
PeriodicBoundaries(dims) -> CubicGrid
Return a CubicGrid
with all dimensions periodic. Equivalent to CubicGrid(dims)
.
Rimu.Hamiltonians.HardwallBoundaries
— FunctionHardwallBoundaries(dims...) -> CubicGrid
HardwallBoundaries(dims) -> CubicGrid
Return a CubicGrid
with all dimensions non-periodic. Equivalent to CubicGrid(dims, (false, false, ...))
.
Rimu.Hamiltonians.LadderBoundaries
— FunctionLadderBoundaries(dims...) -> CubicGrid
LadderBoundaries(dims) -> CubicGrid
Return a CubicGrid
where the first dimension is dimensions non-periodic and the rest are periodic. Equivalent to CubicGrid(dims, (true, false, ...))
.
Index
Rimu.Hamiltonians
Rimu.Hamiltonians.AxialAngularMomentumHO
Rimu.Hamiltonians.CubicGrid
Rimu.Hamiltonians.DensityMatrixDiagonal
Rimu.Hamiltonians.Directions
Rimu.Hamiltonians.Displacements
Rimu.Hamiltonians.ExtendedHubbardMom1D
Rimu.Hamiltonians.ExtendedHubbardReal1D
Rimu.Hamiltonians.FroehlichPolaron
Rimu.Hamiltonians.G2MomCorrelator
Rimu.Hamiltonians.G2RealCorrelator
Rimu.Hamiltonians.G2RealSpace
Rimu.Hamiltonians.GuidingVectorSampling
Rimu.Hamiltonians.GutzwillerSampling
Rimu.Hamiltonians.HOCartesianCentralImpurity
Rimu.Hamiltonians.HOCartesianContactInteractions
Rimu.Hamiltonians.HOCartesianEnergyConservedPerDim
Rimu.Hamiltonians.HamiltonianProduct
Rimu.Hamiltonians.HamiltonianSum
Rimu.Hamiltonians.HubbardMom1D
Rimu.Hamiltonians.HubbardMom1DEP
Rimu.Hamiltonians.HubbardReal1D
Rimu.Hamiltonians.HubbardReal1DEP
Rimu.Hamiltonians.HubbardRealSpace
Rimu.Hamiltonians.IdentityOperator
Rimu.Hamiltonians.MatrixHamiltonian
Rimu.Hamiltonians.Momentum
Rimu.Hamiltonians.ParitySymmetry
Rimu.Hamiltonians.ParticleNumberOperator
Rimu.Hamiltonians.ReducedDensityMatrix
Rimu.Hamiltonians.ScaledHamiltonian
Rimu.Hamiltonians.SingleParticleExcitation
Rimu.Hamiltonians.Stoquastic
Rimu.Hamiltonians.StringCorrelator
Rimu.Hamiltonians.SuperfluidCorrelator
Rimu.Hamiltonians.TimeReversalSymmetry
Rimu.Hamiltonians.Transcorrelated1D
Rimu.Hamiltonians.TransformUndoer
Rimu.Hamiltonians.TwoParticleExcitation
Rimu.Hamiltonians.HardwallBoundaries
Rimu.Hamiltonians.LadderBoundaries
Rimu.Hamiltonians.PeriodicBoundaries
Rimu.Hamiltonians.continuum_dispersion
Rimu.Hamiltonians.hubbard_dispersion
Rimu.Hamiltonians.momentum
Rimu.Hamiltonians.neighbor_site
Rimu.Hamiltonians.rayleigh_quotient
Rimu.Hamiltonians.shift_lattice
Rimu.Hamiltonians.shift_lattice_inv